Tuesday 14 February 2017

Durchschnittliche Saisonale Komponente

Spreadsheet-Implementierung der saisonalen Anpassung und exponentieller Glättung Es ist einfach, saisonale Anpassung durchzuführen und exponentielle Glättungsmodelle mit Excel anzupassen. Die unten aufgeführten Bildschirmbilder und Diagramme werden einer Tabellenkalkulation entnommen, die eine multiplikative saisonale Anpassung und eine lineare Exponentialglättung für die folgenden vierteljährlichen Verkaufsdaten von Outboard Marine darstellt: Um eine Kopie der Tabellenkalkulation selbst zu erhalten, klicken Sie hier. Die Version der linearen exponentiellen Glättung, die hier für Demonstrationszwecke verwendet wird, ist die Brown8217s-Version, nur weil sie mit einer einzigen Spalte von Formeln implementiert werden kann und es nur eine Glättungskonstante gibt, die optimiert werden soll. In der Regel ist es besser, Holt8217s Version, die separate Glättungskonstanten für Ebene und Trend hat. Der Prognoseprozess verläuft wie folgt: (i) Die Daten werden saisonbereinigt (ii) sodann für die saisonbereinigten Daten über lineare exponentielle Glättung prognostiziert und (iii) schließlich werden die saisonbereinigten Prognosen zur Erzielung von Prognosen für die ursprüngliche Serie herangezogen . Der saisonale Anpassungsprozess wird in den Spalten D bis G durchgeführt. Der erste Schritt in der Saisonbereinigung besteht darin, einen zentrierten gleitenden Durchschnitt (hier in Spalte D) zu berechnen. Dies kann erreicht werden, indem der Durchschnitt von zwei einjährigen Durchschnittswerten, die um eine Periode relativ zueinander versetzt sind, genommen wird. (Eine Kombination von zwei Offset-Durchschnittswerten anstatt eines einzigen Mittels wird für die Zentrierung benötigt, wenn die Anzahl der Jahreszeiten gleich ist.) Der nächste Schritt besteht darin, das Verhältnis zum gleitenden Durchschnitt zu berechnen. Wobei die ursprünglichen Daten durch den gleitenden Durchschnitt in jeder Periode dividiert werden - was hier in Spalte E durchgeführt wird. (Dies wird auch Quottrend-Cyclequot-Komponente des Musters genannt, sofern Trend - und Konjunktur-Effekte als all dies betrachtet werden können Bleibt nach einer Durchschnittsberechnung über ein ganzes Jahr im Wert von Daten bestehen. Natürlich können die monatlichen Veränderungen, die nicht saisonal bedingt sind, durch viele andere Faktoren bestimmt werden, aber der 12-Monatsdurchschnitt glättet sie weitgehend Wird der geschätzte saisonale Index für jede Jahreszeit berechnet, indem zuerst alle Verhältnisse für die jeweilige Jahreszeit gemittelt werden, was in den Zellen G3-G6 unter Verwendung einer AVERAGEIF-Formel erfolgt. Die Durchschnittsverhältnisse werden dann neu skaliert, so daß sie auf das genau 100-fache der Anzahl der Perioden in einer Jahreszeit, oder 400 in diesem Fall, das in den Zellen H3-H6 erfolgt, summieren. Unten in der Spalte F werden VLOOKUP-Formeln verwendet, um den entsprechenden saisonalen Indexwert in jede Zeile der Datentabelle einzufügen, entsprechend dem Viertel des Jahres, das es repräsentiert. Der mittlere gleitende Durchschnitt und die saisonbereinigten Daten enden wie folgt: Beachten Sie, dass der gleitende Durchschnitt typischerweise wie eine glattere Version der saisonbereinigten Serie aussieht und an beiden Enden kürzer ist. Ein weiteres Arbeitsblatt in derselben Excel-Datei zeigt die Anwendung des linearen exponentiellen Glättungsmodells auf die saisonbereinigten Daten beginnend in Spalte G. Über der Prognosespalte (hier in Zelle H9) wird ein Wert für die Glättungskonstante (alpha) eingetragen Zur Vereinfachung wird ihm der Bereichsname quotAlpha. quot zugewiesen (Der Name wird mit dem Befehl quotInsertNameCreatequot zugewiesen.) Das LES-Modell wird initialisiert, indem die ersten beiden Prognosen gleich dem ersten Istwert der saisonbereinigten Serie gesetzt werden. Die hier verwendete Formel für die LES-Prognose ist die rekursive Einzelformel des Brown8217s-Modells: Diese Formel wird in der Zelle entsprechend der dritten Periode (hier Zelle H15) eingegeben und von dort nach unten kopiert. Beachten Sie, dass sich die LES-Prognose für die aktuelle Periode auf die beiden vorherigen Beobachtungen und die beiden vorhergehenden Prognosefehler sowie auf den Wert von alpha bezieht. Somit bezieht sich die Prognoseformel in Zeile 15 nur auf Daten, die in Zeile 14 und früher verfügbar waren. (Natürlich könnten wir statt der linearen exponentiellen Glättung einfach statt der linearen exponentiellen Glättung verwenden, könnten wir stattdessen die SES-Formel ersetzen. Wir könnten auch Holt8217s anstelle von Brown8217s LES-Modell verwenden, was zwei weitere Spalten von Formeln erfordern würde, um das Niveau und den Trend zu berechnen Die in der Prognose verwendet werden.) Die Fehler werden in der nächsten Spalte (hier Spalte J) durch Subtrahieren der Prognosen von den Istwerten berechnet. Der Quadratwurzel-Quadratfehler wird als Quadratwurzel der Varianz der Fehler plus dem Quadrat des Mittelwerts berechnet. (Das ergibt sich aus der mathematischen Identität: MSE VARIANCE (Fehler) (AVERAGE (Fehler)). 2) Bei der Berechnung des Mittelwertes und der Varianz der Fehler in dieser Formel sind die ersten beiden Perioden ausgeschlossen, da das Modell nicht tatsächlich mit der Prognose beginnt Die dritte Periode (Zeile 15 auf der Kalkulationstabelle). Der optimale Wert von alpha kann entweder durch manuelles Ändern von alpha gefunden werden, bis das minimale RMSE gefunden wird, oder Sie können das quotSolverquot verwenden, um eine genaue Minimierung durchzuführen. Der Wert von alpha, den der Solver gefunden hat, wird hier angezeigt (alpha0.471). Es ist in der Regel eine gute Idee, die Fehler des Modells (in transformierten Einheiten) zu zeichnen und ihre Autokorrelationen zu berechnen und zu zeichnen, bis zu einer Saison. Hier ist eine Zeitreihenfolge der (saisonbereinigten) Fehler: Die Fehlerautokorrelationen werden mit Hilfe der CORREL () - Funktion berechnet, um die Korrelationen der Fehler selbst mit einer oder mehreren Perioden zu berechnen - Einzelheiten sind im Kalkulationsblatt dargestellt . Hier ist ein Diagramm der Autokorrelationen der Fehler bei den ersten fünf Verzögerungen: Die Autokorrelationen bei den Verzögerungen 1 bis 3 sind sehr nahe bei Null, aber die Spitze bei Verzögerung 4 (deren Wert 0,35 ist) ist etwas mühsam Saisonale Anpassungsprozess nicht vollständig erfolgreich war. Allerdings ist es eigentlich nur marginal signifikant. 95 Signifikanzbanden zum Testen, ob Autokorrelationen signifikant von Null verschieden sind, sind ungefähr plus-oder-minus 2SQRT (n-k), wobei n die Stichprobengröße und k die Verzögerung ist. Hier ist n gleich 38 und k variiert von 1 bis 5, so daß die Quadratwurzel von - n-minus-k für alle von etwa 6 ist, und daher sind die Grenzen für das Testen der statistischen Signifikanz von Abweichungen von Null grob plus - Oder-minus 26 oder 0,33. Wenn Sie den Wert von alpha von Hand in diesem Excel-Modell variieren, können Sie den Effekt auf die Zeitreihen und Autokorrelationsdiagramme der Fehler sowie auf den Root-mean-squared-Fehler beobachten, der nachfolgend erläutert wird. Am Ende der Kalkulationstabelle wird die Prognoseformel quasi in die Zukunft gestartet, indem lediglich Prognosen für tatsächliche Werte an dem Punkt ausgetauscht werden, an dem die tatsächlichen Daten ablaufen - d. h. Wo die Zukunft beginnt. (Mit anderen Worten, in jeder Zelle, in der ein zukünftiger Datenwert auftreten würde, wird eine Zellreferenz eingefügt, die auf die Prognose für diese Periode hinweist.) Alle anderen Formeln werden einfach von oben nach unten kopiert: Beachten Sie, dass die Fehler für die Prognosen von Die Zukunft werden alle berechnet, um Null zu sein. Dies bedeutet nicht, dass die tatsächlichen Fehler null sein werden, sondern lediglich die Tatsache, dass wir für die Vorhersage davon ausgehen, dass die zukünftigen Daten den Prognosen im Durchschnitt entsprechen werden. Die daraus resultierenden LES-Prognosen für die saisonbereinigten Daten sehen wie folgt aus: Mit diesem für α-Periodenprognosen optimalen Wert von alpha ist der prognostizierte Trend leicht nach oben, was auf den lokalen Trend in den letzten 2 Jahren zurückzuführen ist oder so. Für andere Werte von alpha könnte eine sehr unterschiedliche Trendprojektion erhalten werden. Es ist normalerweise eine gute Idee, zu sehen, was mit der langfristigen Trendprojektion geschieht, wenn Alpha variiert wird, weil der Wert, der für kurzfristige Prognosen am besten ist, nicht notwendigerweise der beste Wert für die Vorhersage der weiter entfernten Zukunft sein wird. Dies ist beispielsweise das Ergebnis, das erhalten wird, wenn der Wert von alpha manuell auf 0,25 gesetzt wird: Der projizierte Langzeittrend ist jetzt eher negativ als positiv Mit einem kleineren Wert von alpha setzt das Modell mehr Gewicht auf ältere Daten Seine Einschätzung des aktuellen Niveaus und Tendenz und seine langfristigen Prognosen spiegeln den in den letzten 5 Jahren beobachteten Abwärtstrend anstatt den jüngsten Aufwärtstrend wider. Dieses Diagramm zeigt auch deutlich, wie das Modell mit einem kleineren Wert von alpha langsamer ist, um auf quotturning pointsquot in den Daten zu antworten und daher tendiert, einen Fehler des gleichen Vorzeichens für viele Perioden in einer Reihe zu machen. Die Prognosefehler von 1-Schritt-Vorhersage sind im Mittel größer als die, die zuvor erhalten wurden (RMSE von 34,4 statt 27,4) und stark positiv autokorreliert. Die Lag-1-Autokorrelation von 0,56 übersteigt den oben berechneten Wert von 0,33 für eine statistisch signifikante Abweichung von Null deutlich. Als Alternative zum Abkürzen des Wertes von Alpha, um mehr Konservatismus in Langzeitprognosen einzuführen, wird manchmal ein Quottrend-Dämpfungsquotfaktor dem Modell hinzugefügt, um die projizierte Tendenz nach einigen Perioden abflachen zu lassen. Der letzte Schritt beim Erstellen des Prognosemodells besteht darin, die LES-Prognosen durch Multiplikation mit den entsprechenden saisonalen Indizes zu veranschaulichen. Somit sind die reseasonalisierten Prognosen in Spalte I einfach das Produkt der saisonalen Indizes in Spalte F und der saisonbereinigten LES-Prognosen in Spalte H. Es ist relativ einfach, Konfidenzintervalle für einstufige Prognosen dieses Modells zu berechnen: Erstens Berechnen Sie den RMSE (root-mean-squared Fehler, der nur die Quadratwurzel der MSE ist) und berechnen Sie dann ein Konfidenzintervall für die saisonbereinigte Prognose durch Addition und Subtraktion zweimal des RMSE. (Im Allgemeinen ist ein 95-Konfidenzintervall für eine Ein-Perioden-Vorausprognose ungefähr gleich der Punktvorhersage plus-oder-minus-zweimal der geschätzten Standardabweichung der Prognosefehler, vorausgesetzt, die Fehlerverteilung ist annähernd normal und die Stichprobengröße Ist groß genug, sagen wir, 20 oder mehr Hier ist die RMSE anstelle der Standardabweichung der Fehler die beste Schätzung der Standardabweichung der zukünftigen Prognosefehler, weil sie auch die Zufallsvariationen berücksichtigt.) Die Vertrauensgrenzen Für die saisonbereinigte Prognose werden dann reseasonalisiert. Zusammen mit der Prognose, durch Multiplikation mit den entsprechenden saisonalen Indizes. In diesem Fall ist die RMSE gleich 27,4 und die saisonbereinigte Prognose für die erste künftige Periode (Dez-93) beträgt 273,2. So dass das saisonbereinigte 95-Konfidenzintervall von 273,2-227,4 218,4 auf 273,2227,4 328,0 liegt. Das Multiplizieren dieser Limits durch Decembers saisonalen Index von 68,61. Erhalten wir niedrigere und obere Konfidenzgrenzen von 149,8 und 225,0 um die Dez-93-Punktprognose von 187,4. Die Vertrauensgrenzen für Prognosen, die länger als eine Periode vorangehen, werden sich in der Regel aufgrund der Unsicherheit über das Niveau und den Trend sowie die saisonalen Faktoren erweitern, da der Prognosehorizont zunimmt, aber es ist schwierig, sie im Allgemeinen durch analytische Methoden zu berechnen. (Der geeignete Weg Vertrauensgrenzen für die LES Prognose zu berechnen ist von ARIMA Theorie, aber die Unsicherheit in den Saisonindizes ist eine andere Frage.) Wenn Sie ein realistisches Konfidenzintervall für eine Prognose mehr als eine Periode voraus wollen, nehmen alle Quellen Fehler zu berücksichtigen, Ihre beste Wette ist, empirische Methoden zu verwenden: zum Beispiel ein Konfidenzintervall für einen 2-Schritt voraus Prognose zu erhalten, können Sie eine weitere Spalte in der Kalkulationstabelle ein 2-Step-Ahead-Prognose für jeden Zeitraum zu berechnen schaffen könnten ( Durch Booten der Ein-Schritt-Voraus-Prognose). Dann berechnen die RMSE der 2-Step-Ahead-Prognosefehler und dies als Grundlage für eine 2-Step-Ahead Vertrauen interval. Moving Durchschnitt und exponentielle Glättung Modelle Als erster Schritt in über mittlere Modelle, Random-Walk-Modelle bewegen, und Lineare Trendmodelle, nicht saisonale Muster und Trends können mit einem gleitenden Durchschnitt oder Glättungsmodell extrapoliert werden. Die grundlegende Annahme hinter Mittelwertbildung und Glättungsmodellen ist, dass die Zeitreihe lokal stationär mit einem sich langsam verändernden Mittelwert ist. Daher nehmen wir einen bewegten (lokalen) Durchschnitt, um den aktuellen Wert des Mittelwerts abzuschätzen und dann als die Prognose für die nahe Zukunft zu verwenden. Dies kann als Kompromiss zwischen dem mittleren Modell und dem random-walk-ohne-Drift-Modell betrachtet werden. Die gleiche Strategie kann verwendet werden, um einen lokalen Trend abzuschätzen und zu extrapolieren. Ein gleitender Durchschnitt wird oft als "quotsmoothedquot" - Version der ursprünglichen Serie bezeichnet, da die kurzzeitige Mittelung die Wirkung hat, die Stöße in der ursprünglichen Reihe zu glätten. Durch Anpassen des Glättungsgrades (die Breite des gleitenden Durchschnitts) können wir hoffen, eine Art von optimaler Balance zwischen der Leistung des Mittelwerts und der zufälligen Wandermodelle zu erreichen. Die einfachste Art der Mittelung Modell ist die. Einfache (gleichgewichtige) Moving Average: Die Prognose für den Wert von Y zum Zeitpunkt t1, der zum Zeitpunkt t gemacht wird, entspricht dem einfachen Mittelwert der letzten m Beobachtungen: (Hier und anderswo werde ich das Symbol 8220Y-hat8221 stehen lassen Für eine Prognose der Zeitreihe Y, die am frühestmöglichen früheren Zeitpunkt durch ein gegebenes Modell durchgeführt wird.) Dieser Mittelwert wird auf den Zeitraum t (m1) 2 zentriert, was impliziert, daß die Schätzung des lokalen Mittels dazu neigt, hinter dem wahr zu liegen Wert des lokalen Mittels um etwa (m1) 2 Perioden. Somit ist das Durchschnittsalter der Daten im einfachen gleitenden Durchschnitt (m1) 2 relativ zu der Periode, für die die Prognose berechnet wird, angegeben: dies ist die Zeitspanne, in der die Prognosen dazu tendieren, hinter den Wendepunkten der Daten zu liegen . Wenn Sie z. B. die letzten 5 Werte mitteln, werden die Prognosen etwa 3 Perioden spät sein, wenn sie auf Wendepunkte reagieren. Beachten Sie, dass, wenn m1, die einfache gleitende Durchschnitt (SMA) - Modell ist gleichbedeutend mit der random walk-Modell (ohne Wachstum). Wenn m sehr groß ist (vergleichbar der Länge des Schätzzeitraums), entspricht das SMA-Modell dem mittleren Modell. Wie bei jedem Parameter eines Prognosemodells ist es üblich, den Wert von k anzupassen, um den besten Quotienten der Daten zu erhalten, d. H. Die kleinsten Prognosefehler im Durchschnitt. Hier ist ein Beispiel einer Reihe, die zufällige Fluktuationen um ein sich langsam veränderndes Mittel zu zeigen scheint. Erstens können wir versuchen, es mit einem zufälligen Fußmodell, das entspricht einem einfachen gleitenden Durchschnitt von 1 Begriff entspricht: Das zufällige gehen Modell reagiert sehr schnell auf Änderungen in der Serie, aber dabei nimmt sie einen Großteil der quotnoisequot in der Daten (die zufälligen Fluktuationen) sowie das Quotsignalquot (das lokale Mittel). Wenn wir stattdessen einen einfachen gleitenden Durchschnitt von 5 Begriffen anwenden, erhalten wir einen glatteren Satz von Prognosen: Der 5-Term-einfache gleitende Durchschnitt liefert in diesem Fall deutlich kleinere Fehler als das zufällige Wegmodell. Das Durchschnittsalter der Daten in dieser Prognose beträgt 3 ((51) 2), so dass es dazu neigt, hinter den Wendepunkten um etwa drei Perioden zu liegen. (Zum Beispiel scheint ein Abschwung in Periode 21 aufgetreten zu sein, aber die Prognosen drehen sich erst nach mehreren Perioden später.) Beachten Sie, dass die Langzeitprognosen des SMA-Modells eine horizontale Gerade sind, genau wie beim zufälligen Weg Modell. Somit geht das SMA-Modell davon aus, dass es keinen Trend in den Daten gibt. Während jedoch die Prognosen aus dem Zufallswegmodell einfach dem letzten beobachteten Wert entsprechen, sind die Prognosen des SMA-Modells gleich einem gewichteten Mittelwert der neueren Werte. Die von Statgraphics berechneten Konfidenzgrenzen für die Langzeitprognosen des einfachen gleitenden Durchschnitts werden nicht breiter, wenn der Prognosehorizont zunimmt. Dies ist offensichtlich nicht richtig Leider gibt es keine zugrunde liegende statistische Theorie, die uns sagt, wie sich die Vertrauensintervalle für dieses Modell erweitern sollten. Allerdings ist es nicht zu schwer, empirische Schätzungen der Konfidenzgrenzen für die längerfristigen Prognosen zu berechnen. Beispielsweise können Sie eine Tabellenkalkulation einrichten, in der das SMA-Modell für die Vorhersage von 2 Schritten im Voraus, 3 Schritten voraus usw. innerhalb der historischen Datenprobe verwendet wird. Sie könnten dann die Stichproben-Standardabweichungen der Fehler bei jedem Prognosehorizont berechnen und dann Konfidenzintervalle für längerfristige Prognosen durch Addieren und Subtrahieren von Vielfachen der geeigneten Standardabweichung konstruieren. Wenn wir einen 9-Term einfach gleitenden Durchschnitt versuchen, erhalten wir sogar noch bessere Prognosen und mehr von einem nacheilenden Effekt: Das Durchschnittsalter beträgt jetzt 5 Perioden ((91) 2). Wenn wir einen 19-term gleitenden Durchschnitt nehmen, steigt das Durchschnittsalter auf 10 an: Beachten Sie, dass die Prognosen tatsächlich hinter den Wendepunkten um etwa 10 Perioden zurückbleiben. Welches Maß an Glättung ist am besten für diese Serie Hier ist eine Tabelle, die ihre Fehlerstatistiken vergleicht, darunter auch einen 3-Term-Durchschnitt: Modell C, der 5-Term-Gleitender Durchschnitt, ergibt den niedrigsten Wert von RMSE mit einer kleinen Marge über die 3 - term und 9-Term-Mittelwerte, und ihre anderen Statistiken sind fast identisch. So können wir bei Modellen mit sehr ähnlichen Fehlerstatistiken wählen, ob wir ein wenig mehr Reaktionsfähigkeit oder ein wenig mehr Glätte in den Prognosen bevorzugen würden. (Rückkehr nach oben.) Browns Einfache Exponentialglättung (exponentiell gewichteter gleitender Durchschnitt) Das oben beschriebene einfache gleitende Durchschnittsmodell hat die unerwünschte Eigenschaft, daß es die letzten k-Beobachtungen gleich und vollständig ignoriert. Intuitiv sollten vergangene Daten in einer allmählicheren Weise diskontiert werden - zum Beispiel sollte die jüngste Beobachtung ein wenig mehr Gewicht als die zweitletzte erhalten, und die 2. jüngsten sollten ein wenig mehr Gewicht als die 3. jüngsten erhalten, und bald. Das einfache exponentielle Glättungsmodell (SES) erfüllt dies. 945 bezeichnen eine quotsmoothing constantquot (eine Zahl zwischen 0 und 1). Eine Möglichkeit, das Modell zu schreiben, besteht darin, eine Reihe L zu definieren, die den gegenwärtigen Pegel (d. H. Den lokalen Mittelwert) der Serie, wie er aus Daten bis zu der Zeit geschätzt wird, darstellt. Der Wert von L zur Zeit t wird rekursiv von seinem eigenen vorherigen Wert wie folgt berechnet: Somit ist der aktuelle geglättete Wert eine Interpolation zwischen dem vorher geglätteten Wert und der aktuellen Beobachtung, wobei 945 die Nähe des interpolierten Wertes auf die neueste steuert Überwachung. Die Prognose für die nächste Periode ist einfach der aktuelle geglättete Wert: Äquivalent können wir die nächste Prognose direkt in Form früherer Prognosen und früherer Beobachtungen in einer der folgenden gleichwertigen Versionen ausdrücken. In der ersten Version ist die Prognose eine Interpolation zwischen vorheriger Prognose und vorheriger Beobachtung: In der zweiten Version wird die nächste Prognose durch Anpassung der bisherigen Prognose in Richtung des bisherigen Fehlers um einen Bruchteil 945 erhalten Zeit t. In der dritten Version ist die Prognose ein exponentiell gewichteter (dh diskontierter) gleitender Durchschnitt mit Abzinsungsfaktor 1-945: Die Interpolationsversion der Prognoseformel ist am einfachsten zu verwenden, wenn Sie das Modell in einer Tabellenkalkulation implementieren Einzelne Zelle und enthält Zellverweise, die auf die vorhergehende Prognose, die vorherige Beobachtung und die Zelle mit dem Wert von 945 zeigen. Beachten Sie, dass, wenn 945 1, das SES-Modell zu einem zufälligen Weg-Modell (ohne Wachstum) äquivalent ist. Wenn 945 0 ist, entspricht das SES-Modell dem mittleren Modell, wobei angenommen wird, dass der erste geglättete Wert gleich dem Mittelwert gesetzt ist. (Zurück zum Seitenanfang.) Das Durchschnittsalter der Daten in der Simple-Exponential-Glättungsprognose beträgt 1 945, bezogen auf den Zeitraum, für den die Prognose berechnet wird. (Dies sollte nicht offensichtlich sein, kann aber leicht durch die Auswertung einer unendlichen Reihe gezeigt werden.) Die einfache gleitende Durchschnittsprognose neigt daher zu Verzögerungen hinter den Wendepunkten um etwa 1 945 Perioden. Wenn beispielsweise 945 0,5 die Verzögerung 2 Perioden beträgt, wenn 945 0,2 die Verzögerung 5 Perioden beträgt, wenn 945 0,1 die Verzögerung 10 Perioden und so weiter ist. Für ein gegebenes Durchschnittsalter (d. H. Eine Verzögerung) ist die einfache exponentielle Glättungsprognose (SES) der simplen gleitenden Durchschnittsprognose (SMA) etwas überlegen, weil sie relativ viel mehr Gewicht auf die jüngste Beobachtung - i. e stellt. Es ist etwas mehr quresponsivequot zu Änderungen, die sich in der jüngsten Vergangenheit. Zum Beispiel haben ein SMA - Modell mit 9 Terminen und ein SES - Modell mit 945 0,2 beide ein durchschnittliches Alter von 5 Jahren für die Daten in ihren Prognosen, aber das SES - Modell legt mehr Gewicht auf die letzten 3 Werte als das SMA - Modell und am Gleiches gilt für die Werte von mehr als 9 Perioden, wie in dieser Tabelle gezeigt: 822forget8221. Ein weiterer wichtiger Vorteil des SES-Modells gegenüber dem SMA-Modell ist, dass das SES-Modell einen Glättungsparameter verwendet, der kontinuierlich variabel ist und somit leicht optimiert werden kann Indem ein Quotsolverquot-Algorithmus verwendet wird, um den mittleren quadratischen Fehler zu minimieren. Der optimale Wert von 945 im SES-Modell für diese Serie ergibt sich wie folgt: Das durchschnittliche Alter der Daten in dieser Prognose beträgt 10.2961 3,4 Perioden, was ähnlich wie bei einem 6-term einfachen gleitenden Durchschnitt ist. Die Langzeitprognosen aus dem SES-Modell sind eine horizontale Gerade. Wie im SMA-Modell und dem Random-Walk-Modell ohne Wachstum. Es ist jedoch anzumerken, dass die von Statgraphics berechneten Konfidenzintervalle nun in einer vernünftigen Weise abweichen und dass sie wesentlich schmaler sind als die Konfidenzintervalle für das Zufallswegmodell. Das SES-Modell geht davon aus, dass die Reihe etwas vorhersehbarer ist als das Zufallswandermodell. Ein SES-Modell ist eigentlich ein Spezialfall eines ARIMA-Modells. So dass die statistische Theorie der ARIMA-Modelle eine solide Grundlage für die Berechnung der Konfidenzintervalle für das SES-Modell bildet. Insbesondere ist ein SES-Modell ein ARIMA-Modell mit einer nicht sonderbaren Differenz, einem MA (1) - Term und kein konstanter Term. Ansonsten als quotARIMA (0,1,1) - Modell ohne Konstantquot bekannt. Der MA (1) - Koeffizient im ARIMA-Modell entspricht der Größe 1 - 945 im SES-Modell. Wenn Sie zum Beispiel ein ARIMA-Modell (0,1,1) ohne Konstante an die hier analysierte Serie anpassen, ergibt sich der geschätzte MA (1) - Koeffizient auf 0,7029, was fast genau ein Minus von 0,2961 ist. Es ist möglich, die Annahme eines von Null verschiedenen konstanten linearen Trends zu einem SES-Modell hinzuzufügen. Dazu wird ein ARIMA-Modell mit einer nicht sonderbaren Differenz und einem MA (1) - Term mit konstantem, d. H. Einem ARIMA-Modell (0,1,1) mit konstantem Wert angegeben. Die langfristigen Prognosen haben dann einen Trend, der dem durchschnittlichen Trend über den gesamten Schätzungszeitraum entspricht. Sie können dies nicht in Verbindung mit saisonalen Anpassungen tun, da die saisonalen Anpassungsoptionen deaktiviert sind, wenn der Modelltyp auf ARIMA gesetzt ist. Sie können jedoch einen konstanten langfristigen exponentiellen Trend zu einem einfachen exponentiellen Glättungsmodell (mit oder ohne saisonale Anpassung) hinzufügen, indem Sie die Inflationsanpassungsoption im Prognoseverfahren verwenden. Die prozentuale Zinssatzquote (prozentuale Wachstumsrate) pro Periode kann als der Steigungskoeffizient in einem linearen Trendmodell geschätzt werden, das an die Daten in Verbindung mit einer natürlichen Logarithmuswandlung angepasst ist, oder es kann auf anderen unabhängigen Informationen bezüglich der langfristigen Wachstumsperspektiven beruhen . (Rückkehr nach oben.) Browns Linear (dh doppelt) Exponentielle Glättung Die SMA-Modelle und SES-Modelle gehen davon aus, dass es in den Daten keine Tendenzen gibt (die in der Regel in Ordnung sind oder zumindest nicht zu schlecht für 1- Wenn die Daten relativ verrauscht sind), und sie können modifiziert werden, um einen konstanten linearen Trend, wie oben gezeigt, zu integrieren. Was ist mit kurzfristigen Trends Wenn eine Serie eine unterschiedliche Wachstumsrate oder ein zyklisches Muster zeigt, das sich deutlich gegen das Rauschen auszeichnet, und wenn es notwendig ist, mehr als eine Periode vorher zu prognostizieren, könnte die Schätzung eines lokalen Trends auch sein Ein Problem. Das einfache exponentielle Glättungsmodell kann verallgemeinert werden, um ein lineares exponentielles Glättungsmodell (LES) zu erhalten, das lokale Schätzungen sowohl des Niveaus als auch des Trends berechnet. Das einfachste zeitvariable Trendmodell ist Browns lineares exponentielles Glättungsmodell, das zwei verschiedene geglättete Serien verwendet, die zu verschiedenen Zeitpunkten zentriert sind. Die Prognoseformel basiert auf einer Extrapolation einer Linie durch die beiden Zentren. (Eine weiterentwickelte Version dieses Modells, Holt8217s, wird unten diskutiert.) Die algebraische Form des Brown8217s linearen exponentiellen Glättungsmodells, wie die des einfachen exponentiellen Glättungsmodells, kann in einer Anzahl von unterschiedlichen, aber äquivalenten Formen ausgedrückt werden. Die quadratische quadratische Form dieses Modells wird gewöhnlich wie folgt ausgedrückt: Sei S die einfach geglättete Reihe, die durch Anwendung einfacher exponentieller Glättung auf Reihe Y erhalten wird. Das heißt, der Wert von S in der Periode t ist gegeben durch: (Erinnern wir uns, Exponentielle Glättung, so würde dies die Prognose für Y in der Periode t1 sein.) Dann sei Squot die doppelt geglättete Folge, die man erhält, indem man eine einfache exponentielle Glättung (unter Verwendung desselben 945) auf die Reihe S anwendet: Schließlich die Prognose für Ytk. Für jedes kgt1 ist gegeben durch: Dies ergibt e & sub1; & sub0; (d. h. Cheat ein Bit und die erste Prognose der tatsächlichen ersten Beobachtung gleich) und e & sub2; Y & sub2; 8211 Y & sub1; Nach denen die Prognosen unter Verwendung der obigen Gleichung erzeugt werden. Dies ergibt die gleichen Anpassungswerte wie die Formel auf der Basis von S und S, wenn diese mit S 1 S 1 Y 1 gestartet wurden. Diese Version des Modells wird auf der nächsten Seite verwendet, die eine Kombination von exponentieller Glättung mit saisonaler Anpassung veranschaulicht. Holt8217s Lineares Exponentialglättung Brown8217s LES-Modell berechnet lokale Schätzungen von Pegel und Trend durch Glätten der letzten Daten, aber die Tatsache, dass dies mit einem einzigen Glättungsparameter erfolgt, legt eine Einschränkung für die Datenmuster fest, die es anpassen kann: den Pegel und den Trend Dürfen nicht zu unabhängigen Preisen variieren. Holt8217s LES-Modell adressiert dieses Problem durch zwei Glättungskonstanten, eine für die Ebene und eine für den Trend. Zu jedem Zeitpunkt t, wie in Brown8217s-Modell, gibt es eine Schätzung L t der lokalen Ebene und eine Schätzung T t der lokalen Trend. Hier werden sie rekursiv aus dem zum Zeitpunkt t beobachteten Wert von Y und den vorherigen Schätzungen von Pegel und Trend durch zwei Gleichungen berechnet, die exponentielle Glättung separat anwenden. Wenn der geschätzte Pegel und der Trend zum Zeitpunkt t-1 L t82091 und T t-1 sind. Dann ist die Prognose für Y tshy, die zum Zeitpunkt t-1 gemacht worden wäre, gleich L t-1 T t-1. Wenn der tatsächliche Wert beobachtet wird, wird die aktualisierte Schätzung des Pegels rekursiv berechnet, indem zwischen Y tshy und seiner Prognose L t-1 T t-1 unter Verwendung von Gewichten von 945 und 1- 945 interpoliert wird. Die Änderung des geschätzten Pegels, Nämlich L t 8209 L t82091. Kann als eine verrauschte Messung des Trends zum Zeitpunkt t interpretiert werden. Die aktualisierte Schätzung des Trends wird dann rekursiv berechnet, indem zwischen L t 8209 L t82091 und der vorherigen Schätzung des Trends T t-1 interpoliert wird. Unter Verwendung der Gewichte von 946 und 1-946: Die Interpretation der Trendglättungskonstanten 946 ist analog zu der Pegelglättungskonstante 945. Modelle mit kleinen Werten von 946 nehmen an, dass sich der Trend mit der Zeit nur sehr langsam ändert, während Modelle mit Größere 946 nehmen an, dass sie sich schneller ändert. Ein Modell mit einem großen 946 glaubt, dass die ferne Zukunft sehr unsicher ist, da Fehler in der Trendschätzung bei der Prognose von mehr als einer Periode ganz wichtig werden. (Rückkehr nach oben) Die Glättungskonstanten 945 und 946 können auf übliche Weise geschätzt werden, indem der mittlere quadratische Fehler der 1-Schritt-Voraus-Prognosen minimiert wird. Wenn dies in Statgraphics getan wird, erweisen sich die Schätzungen als 945 0.3048 und 946 0,008. Der sehr geringe Wert von 946 bedeutet, dass das Modell eine sehr geringe Veränderung im Trend von einer Periode zur nächsten annimmt, so dass dieses Modell im Grunde versucht, einen langfristigen Trend abzuschätzen. Analog zur Vorstellung des Durchschnittsalters der Daten, die bei der Schätzung der lokalen Ebene der Reihe verwendet werden, ist das Durchschnittsalter der Daten, die bei der Schätzung des lokalen Trends verwendet werden, proportional zu 1 946, wenn auch nicht exakt gleich . In diesem Fall erweist sich dies als 10.006 125. Dies ist eine sehr genaue Zahl, da die Genauigkeit der Schätzung von 946 nicht wirklich 3 Dezimalstellen beträgt, sondern sie ist von der gleichen Größenordnung wie die Stichprobengröße von 100 Dieses Modell ist Mittelung über eine ziemlich große Geschichte bei der Schätzung der Trend. Das Prognose-Diagramm unten zeigt, dass das LES-Modell einen etwas größeren lokalen Trend am Ende der Serie schätzt als der im SEStrend-Modell geschätzte konstante Trend. Außerdem ist der Schätzwert von 945 fast identisch mit dem, der durch Anpassen des SES-Modells mit oder ohne Trend erhalten wird, so dass dies fast das gleiche Modell ist. Nun, sehen diese aussehen wie vernünftige Prognosen für ein Modell, das soll Schätzung einer lokalen Tendenz Wenn Sie 8220eyeball8221 dieser Handlung, sieht es so aus, als ob der lokale Trend nach unten am Ende der Serie gedreht hat Was ist passiert Die Parameter dieses Modells Wurden durch Minimierung des quadratischen Fehlers von 1-Schritt-Voraus-Prognosen, nicht längerfristigen Prognosen, abgeschätzt, wobei der Trend keinen großen Unterschied macht. Wenn alles, was Sie suchen, 1-Schritt-vor-Fehler sind, sehen Sie nicht das größere Bild der Trends über (sagen) 10 oder 20 Perioden. Um dieses Modell im Einklang mit unserer Augapfel-Extrapolation der Daten zu erhalten, können wir die Trendglättungskonstante manuell anpassen, so dass sie eine kürzere Basislinie für die Trendschätzung verwendet. Wenn wir beispielsweise 946 0,1 setzen, beträgt das durchschnittliche Alter der Daten, die bei der Schätzung des lokalen Trends verwendet werden, 10 Perioden, was bedeutet, dass wir den Trend über die letzten 20 Perioden oder so mitteln. Here8217s, was das Prognose-Plot aussieht, wenn wir 946 0,1 setzen, während 945 0,3 halten. Dies scheint intuitiv vernünftig für diese Serie, obwohl es wahrscheinlich gefährlich, diesen Trend mehr als 10 Perioden in der Zukunft zu extrapolieren. Was ist mit den Fehlerstatistiken Hier ist ein Modellvergleich für die beiden oben gezeigten Modelle sowie drei SES-Modelle. Der optimale Wert von 945 für das SES-Modell beträgt etwa 0,3, aber ähnliche Ergebnisse (mit etwas mehr oder weniger Reaktionsfähigkeit) werden mit 0,5 und 0,2 erhalten. (A) Holts linearer Exp. Glättung mit alpha 0.3048 und beta 0,008 (B) Holts linear exp. Glättung mit alpha 0,3 (E) Einfache exponentielle Glättung mit alpha 0,3 (E) Einfache exponentielle Glättung mit alpha 0,2 Ihre Stats sind nahezu identisch, so dass wir wirklich die Wahl auf der Basis machen können Von 1-Schritt-Vorhersagefehlern innerhalb der Datenprobe. Wir müssen auf andere Überlegungen zurückgreifen. Wenn wir glauben, dass es sinnvoll ist, die aktuelle Trendschätzung auf das, was in den letzten 20 Perioden passiert ist, zugrunde legen, können wir für das LES-Modell mit 945 0,3 und 946 0,1 einen Fall machen. Wenn wir agnostisch sein wollen, ob es einen lokalen Trend gibt, dann könnte eines der SES-Modelle leichter zu erklären sein, und würde auch für die nächsten 5 oder 10 Perioden mehr Mittelprognosen geben. (Rückkehr nach oben.) Welche Art von Trend-Extrapolation am besten ist: horizontal oder linear Empirische Evidenz deutet darauf hin, dass es, wenn die Daten bereits für die Inflation angepasst wurden (wenn nötig), unprätent ist, kurzfristige lineare Werte zu extrapolieren Trends sehr weit in die Zukunft. Die heutigen Trends können sich in Zukunft aufgrund unterschiedlicher Ursachen wie Produktveralterung, verstärkte Konkurrenz und konjunkturelle Abschwünge oder Aufschwünge in einer Branche abschwächen. Aus diesem Grund führt eine einfache exponentielle Glättung oft zu einer besseren Out-of-Probe, als ansonsten erwartet werden könnte, trotz ihrer quotnaivequot horizontalen Trend-Extrapolation. Damped Trendmodifikationen des linearen exponentiellen Glättungsmodells werden in der Praxis häufig auch eingesetzt, um in seinen Trendprojektionen eine Note des Konservatismus einzuführen. Das Dämpfungs-Trend-LES-Modell kann als Spezialfall eines ARIMA-Modells, insbesondere eines ARIMA-Modells (1,1,2), implementiert werden. Es ist möglich, Konfidenzintervalle um langfristige Prognosen zu berechnen, die durch exponentielle Glättungsmodelle erzeugt werden, indem man sie als Spezialfälle von ARIMA-Modellen betrachtet. (Achtung: Nicht alle Software berechnet die Konfidenzintervalle für diese Modelle korrekt.) Die Breite der Konfidenzintervalle hängt ab von (i) dem RMS-Fehler des Modells, (ii) der Art der Glättung (einfach oder linear) (iii) dem Wert (S) der Glättungskonstante (n) und (iv) die Anzahl der Perioden vor der Prognose. Im Allgemeinen breiten sich die Intervalle schneller aus, da 945 im SES-Modell größer wird und sich viel schneller ausbreiten, wenn lineare statt einfache Glättung verwendet wird. Dieses Thema wird im Abschnitt "ARIMA-Modelle" weiter erläutert. (Zurück zum Seitenanfang.) Saisonkomponente (für Zeitreihen-Daten) Zeitreihen-Daten, bei denen die saisonale Komponente entfernt wurde. In saisonbereinigten Daten wurde der Effekt der regelmäßigen saisonalen Phänomene entfernt. Die geglättete Baureihe T C und die saisonbereinigte Baureihe T C I. Statistiken New Zealandrsquos Economic Survey of Manufacturing lieferte die folgenden Daten über die tatsächlichen Betriebserträge für das verarbeitende Gewerbe in Neuseeland. Zentrierte Bewegungsmittel wurden berechnet. Für die Quartale mit zentriert Bewegungsmittel der einzelnen saisonalen Effekt wird folgendermaßen berechnet: Das operative Ergebnis (Rohdaten) ndash (zentriert) für jedes Quartal die Gesamtjahreseffekt bedeuten bewegt durch Mittelung der einzelnen saisonale Effekte geschätzt. Die beiden einzelnen Saison-Effekte für März Quartale sind ndash588.125 und ndash561.75. Der Mittelwert dieser 2 Werte ist ndash574.938. Die anderen geschätzten allgemeinen saisonalen Effekte sind in der zweiten Tabelle unten gezeigt. Saisonbereinigte Daten durch berechnet wird: Das Betriebsergebnis (Rohdaten) Ndash geschätzten Gesamt saisonalen Effekt Die Berechnung des Mar-05 Quartal ist 17322 ndash (ndash574.938) 17.896,938 17322 17696 17060 18046 17460 19034 18245 18866 18174 19464 18633 20616 17.548,250 17.732,750 18.048,125 18298.750 18490.500 18633.500 18735.750 19003.000 17896.938 17097.875 17426.875 17773.125 18034.938 18435.875 18611.875 18593.125 18748.938 18865.875 18999.875 20343.125 die Rohdaten und die saisonbereinigten Daten werden unten angezeigt. Beachten Sie, dass M, J, S und D Quartalsjahre anzeigen, die im März, Juni, September und Dezember enden. In dieser Kategorie befinden sich zurzeit keine Beiträge.


No comments:

Post a Comment